Here are a few of our ongoing projects



An implanted neuroprosthesis is a device that communicates directly with the nervous system by means of electrical stimulation and/or recording. Functional electrical stimulation (FES) of motor neural pathways can be used to restore movement, but establishing a channel of communication between the artificial device and the user's nervous system is a major challenge. In order to address this problem, we are developing techniques to extract information (sensory or motor signals) from the electrical activity of peripheral nerves. The objective of this line of research is to eventually create neuroprosthetic systems that can reproduce natural movement.



The restoration of upper limb function is usually rated as the top priority by quadriplegic individuals. In order to develop effective new rehabilitation interventions and improve outcomes, it is important to measure and track hand function on a regular basis throughout the rehabilitation process. Because of the enormous complexity of the human hand, creating sensors that can accurately quantify its function is a significant technical challenge. We are using tools including computer vision, rehabilitation robotics and electromyography to develop methods that can be used to track hand and upper limb function throughout the rehabilitation process, from the clinic to the home. This information can then be used to develop individualized and responsive rehabilitation programs.